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Abstract

This work is aimed at evaluating the optimal location of three discrete heat sources which could be placed anywhere inside a ventilated
cavity and cooled by forced convection. The computational domain involves a square cavity with adiabatic walls, diagonally opposite
inlet and outlet, with a heat flux of 1000 W/m2 on the heat sources and constant velocity of 4 m/s at the inlet. The two dimensional flow
and temperature fields are obtained by performing simulations on FLUENT 6.3. The micro genetic algorithm (MGA) using the six coor-
dinates of the heat sources as input parameters and 5 individuals in a population is used for the optimization, with the objective function
as minimizing the maximum temperature on any of the heat sources. Initially for 66 generations, simulations were repeatedly done to
evaluate the objective function. This data was used to train a back-propagation artificial neural network (ANN) using the Bayesian reg-
ularization algorithm to predict the fitness from the six inputs. This trained ANN was integrated with the micro genetic algorithm to
evolve the population for 1000 generations to arrive at the global optimum. Sensitivity studies have been carried out on the optimal solu-
tion by varying the Reynolds number. This study shows that by integrating ANN with GA, the computational time can be reduced sub-
stantially in problems of this class.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Electronic equipment have become an integral part of
almost every phase of modern living. Better reliability of
this equipment requires that, they be maintained at a rela-
tively constant temperature that should be below the max-
imum service temperature specified by the manufacturer.
Consequent to the miniaturization of electronic equipment,
the heat fluxes increase which in turn demands more effi-
cient cooling strategies. While liquid cooling may provide
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the answer to this, air cooling is still prevalent up to certain
heat flux levels due to its simplicity and low cost. It is also
very important that these cooling systems are designed in
the most efficient way. It is in this context that optimization
studies of the location of the heat sources are becoming
increasingly relevant.

Forced convection in electronics cooling has attracted
considerable attention in the literature. Icoz et al. [1] have
analyzed the cooling of two discrete heat sources placed in
a horizontal channel. They showed that the heat transfer
rates increase by 35–70% in turbulent regime and pressure
drop, which is a more severe constraint, increases with
the height of the heat source and the Reynolds number.
Bhowmik et al. [2] have studied mixed, natural and forced
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Nomenclature

ai neural network predicted value
b height of the cavity (m)
C1e, C2e, C3e k�e model constants
d width of the inlet to the cavity (m)
ED(w) weight decay regularizer
Ew(w) sum squared error between predicted and test

data
F(w) performance function for Bayesian regulariza-

tion
I turbulence intensity u0

uavg

k turbulence kinetic energy (m2 s�2)
L width of the cavity (m)
Lh length of the heat source (m)
M number of nodes in the x-direction
MRE absolute mean relative error
N number of nodes in the y-direction
Npop number of individuals in a population
P static pressure (Pa)
Pr Prandtl Number

lCp

k

� �
Dpmax maximum pressure drop inside the cavity (Pa)
q0 heat flux on the heat source (W m�2)
Re Reynolds Number qud

l

� �
R2 absolute fraction of variance
Rtest correlation coefficient on test data set
Tmax maximum temperature on the heat sources (K)
T1 temperature of inlet air (K)
ti available target data for ANN
th thickness of the heat source (m)
u velocity component of fluid in the x-direction

(m s�1)

u1 velocity at the inlet of the cavity (m s�1)
us friction velocity

ffiffiffiffiffiffiffiffiffiffi
sw=q

p� �
near the wall (m s�1)

v velocity component of fluid in the y-direction
(m s�1)

w network weight
xi horizontal coordinate of mid point of ith heat

source (m)
yi vertical coordinate of mid point of ith heat

source (m)
y+ dimensionless wall distance qusyn

l

� �
yn normal distance of the cell centre from nearest

wall (m)

Greek symbols

a fraction of sum square error in Bayesian algo-
rithm

b fraction of weight decay regularizer used in
Bayesian algorithm

b0 coefficient of thermal expansion (K�1)
e turbulence dissipation rate (m2 s�3)
k number of bits used to encode the input vari-

ables to the micro genetic algorithm
l dynamic viscosity (kg m�1 s�1)
lt turbulent viscosity (kg m�1 s�1)
q density of the fluid (kg m�3)
rk, rT, re turbulent Prandtl numbers for k, T and e
sw wall shear stress (N m�2)
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convection heat transfer of four inline chips in a vertical
channel. The effects of heat flux, coolant flow rates and
chip numbers were investigated and a correlation was
developed to describe the three modes of convection.
Mathews and Balaji [3] have carried out a numerical inves-
tigation of turbulent mixed convection in a vertical channel
with discrete heat sources and studied the effect of various
parameters like the thermal conductivity of wall material,
thermal conductivity of discrete heat source (kc), Reynolds
number and so on. Using the ACFD approach, a correla-
tion to evaluate the maximum temperature on the heat
sources on the channel has been developed which suits
the engineer’s interest. Choi and Ortega [4] have studied
mixed convection in an inclined channel with discrete heat
sources. The results show that the overall Nusselt number
strongly depends on the inclination angle in the natural
and mixed convection regime and is insensitive in the
forced convection regime.

Constructal theory was used to study the optimal distri-
bution of discrete heat sources mounted on a horizontal
wall with forced convection by da Silva et al. [5]. With
the objective to increase the global conductance between
the hot wall and coolant, their results showed that the heat
sources have to be distributed non-uniformly. Simulations
of the flow regime have shown that as the Reynolds num-
ber increases, the heat sources tend to migrate towards the
tip of the boundary layer. For a fixed heater area, the cool-
ing increases with the number of optimally placed heat
sources. Recently, da Silva et al. [6] have determined the
optimal location of heat sources on a vertical wall with nat-
ural convection using constructal theory. The results
showed that the optimal locations are a strong function
of the Rayleigh number and the heat sources move towards
the tip of the boundary layer at higher Rayleigh numbers.
An interesting feature of this work is that as the number of
heat sources increases, the rate of increase of global con-
ductance decreases which shows that diminishing returns
is an important characteristic of optimized complex struc-
tures. Dias and Milanez [7] have proposed a new method-
ology in the optimization studies of heat sources on a
vertical wall. They have validated the results of da Silva
et al. [6] by using genetic algorithms and showed that this
approach is computationally more feasible and faster than
an extensive search technique.
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Based on the above literature survey, it can be con-
cluded that most of the research has been focused on heat
sources mounted on a horizontal, vertical or an inclined
channel. The idea of moving the heat sources anywhere
in a confined flow is also closely related to constructal the-
ory which has been reviewed extensively in [8]. This geom-
etry of heat sources placed anywhere inside a cavity is the
basic building block for studying more complex situations
like avionic packages, computer cabins and so on. Hence,
in this paper we attempt a contemporary approach of com-
bining artificial neural networks with genetic algorithm to
determine a global optimum for the problem.
2. Model and governing equations

2.1. Model

The geometry for the problem under consideration is
shown in Fig. 1. The two dimensional cavity shown has
dimensions of L = 0.4 m and b = 0.4 m and is ventilated
where air flows in from the bottom left corner and flows
out from the top right corner. There are three heat sources
that need to be cooled by the aid of a fan and these, in prin-
ciple, can be anywhere inside the cavity. Each heat source is
modeled as a line heat source with a height Lh = 0.04 m
and thickness th = 8 � 10�3 m, with a constant heat flux
of 1000 W/m2 on two sides. The fluid enters the inlet with
a constant velocity of u1 = 4 m/s and the Reynolds num-
ber Re = 21797 which corresponds to a highly turbulent
regime. The turbulent intensity at the inlet is chosen as
10%. The flow exit is modeled as a pressure outlet. All
the outer walls are assumed to be adiabatic.
2.2. Basic equations

The turbulent flow of air is described by the Reynolds
Averaged Navier Stokes (RANS) equations. These equa-
tions for a two dimensional, steady, incompressible flow
and heat transfer are as follows:
Fig. 1. Schematic of the problem geometry.
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The standard k�e turbulence model has been the work-
horse of practical engineering flow calculations due to its
robustness, economy and reasonable accuracy for a wide
range of turbulent flows. Hence in this study, the standard
k�e model is used. The turbulence kinetic energy (k) and
turbulent dissipation rate (e) are evaluated at every point
in the flow from a solution to the following transport
equations.
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The turbulence viscosity lt is evaluated from the velocity
scale (k1/2) and the length scale k3=2

e

� �
and is defined in Eq.

(9).

lt ¼ qCl
k2

e
ð9Þ

The constants used in the above equations are given by
C1e = 1.44, C2e = 1.92, Cl = 0.09, rk = 1, re = 1.3



Table 1
Variation of temperature with grid size for the computational domain
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C3e ¼ tanh
v
u
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employed in the present study

S. No. Grid size (M � N) Total nodes (n) Maximum
temperature (K)

1 25 � 50 15,994 347.91
2 30 � 60 11,730 348.12
3 35 � 70 14,347 348.53
4 40 � 80 17,069 349.36
5 45 � 90 20,085 349.39
6 50 � 100 23,244 349.82
7 55 � 110 19,128 351.25
8 60 � 120 22,009 350.90
9 65 � 130 25,042 352.36
10 100 � 200 51,765 352.68
11 120 � 240 63,470 353.21
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3. CFD solution procedure

3.1. Numerical scheme

The two dimensional governing equations are discret-
ized on a non-uniform triangular grid using the finite vol-
ume method. Since the heat sources are in the y-
direction, the grid was created with the number of nodes
in the y-direction being twice the number of nodes in the
x-direction to capture the temperature field at the heat
sources accurately. The velocities and the pressure are cal-
culated using the semi implicit pressure linked equation sol-
ver (SIMPLE) algorithm. The interpolation of the
gradients of velocities and temperature used the second
order upwind scheme. The discretized equations are then
linearized using an implicit technique and solved iteratively
using FLUENT 6.3 [9]. As the standard k�e model is only
valid for turbulent core flows, enhanced wall treatment is
employed to use the k�e model in the near wall region.
For this purpose, the mesh near the walls is sufficiently
refined and the y+ values near the wall vary between 0
and 0.92 which indicates the adequacy of the enhanced wall
treatment approach used in the present study.
347

348
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Fig. 2. Grid independence and Richardson extrapolation.

Table 2
Energy and mass balance of the problem analyzed in the present study
showing the accuracy of the solution for a velocity of 4 m/s and heat flux
of 1000 W/m2

Value (in) Value (out) % Deviation

Energy (kW) 3.73314 3.73315 2.41E�05
Mass flow (kg/s) 1.715 1.715001 5.83E�05
3.2. Solution verification

Solution verification deals with the assessment of the
numerical errors which always exist when partial differen-
tial equations are solved numerically. The discretization
error, which is the difference between the numerical solu-
tion and the exact solution to the continuum partial differ-
ential equation, is instrumental in establishing the accuracy
of the CFD solution. Richardson extrapolation (Christo-
pher J. Roy [10]) is a popular approach for obtaining a grid
which has low discretization error. It requires numerical
solutions on two or more grids with different levels of
refinement which are then used to obtain a higher-order
estimate of the exact solution.

As shown in Table 1, simulations were done on different
grid sizes with the number of nodes varying from 15,994 to
63,470 for the grid independence study. It is also clear that
as the grid is refined by increasing the number of nodes, the
maximum temperature progressively increases. Fig. 2
shows a plot of the maximum temperature vs. 1/M � N

where M is the number of nodes in the x-direction and N

is the number of nodes in the y-direction. A best fit line
is also drawn whose intercept on y-axis corresponds to
the temperature on a grid of infinite nodes. This grid inde-
pendent temperature Tinf is found out to be 354.1 K. The
relative error of temperature on grid 9 of 352.36 K with Tinf

is 0.49 %. Hence grid 9 with 25,000 nodes is chosen for fur-
ther analysis. Table 2 shows the deviation between the
energy and mass inflow and outflow. The negligible devia-
tion between the two quantities is a further indication of
the accuracy of the solution. To ascertain the insensitivity
of the results to the turbulence intensity (I), studies have
been done on a typical case with the turbulence intensity
changing from 5% to 25% which resulted in less than
0.4% change on the maximum temperature on the heat
sources.

3.3. Solution validation

The turbulent modeling approach employed in the pres-
ent study is validated with the experimental data of turbu-
lent natural convection in a square cavity provided by
Ampofo and Karayiannis [11]. The isothermal left hot wall
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and right cold wall were maintained at 50 �C and 10 �C,
respectively. Though in [11], exact adiabaticity could not
be achieved on the horizontal walls, the comparison should
serve as a ballpark indicator of the adequacy of the numer-
ical model. The vertical velocity and the temperature of the
fluid were evaluated along a horizontal line drawn at mid-
height in the square cavity and the results plotted in Figs. 3
and 4.

Fig. 3 shows that vertical velocity at the wall is zero and
increases rapidly very close to the wall and finally becomes
zero in the centre region of the cavity. Similarly due to the
thermal boundary layer developed near the walls, the tem-
perature increases near the hot wall and decreases near the
cold wall. Even though, the top and bottom wall are not
truly adiabatic in the experimental study in [11], the veloc-
ity and temperature profiles at mid-height are similar to the
Fig. 3. Validation vertical velocity profile at (y/L) = 0.5 for the bench-
mark problem.

Fig. 4. Validation temperature profile at (y/L) = 0.5 for the benchmark
problem.
ideal case of adiabatic walls. Therefore, the excellent corre-
lation between the data available from [11] and the present
study ‘‘qualitatively” validates the methodology adopted in
this study.

4. Optimization with genetic algorithm

4.1. Genetic algorithm

Optimization plays an important role in today’s world
and is especially critical for design engineers when multiple
parameters are involved. There are several techniques for
optimization like analytical approach, downhill simplex
method (Nelder and Mead [12]), gradient descent and so
on. However most of the above algorithms suffer from
the disadvantage of getting ‘‘stuck” in the local minimum,
and so recently evolutionary algorithms like genetic algo-
rithms (Holland [13], Goldberg [14]), simulated annealing
(Kirkpatrick et al. [15]) and ant colony optimization ( Dor-
igo and Maria [16]) have been proposed to overcome these
difficulties of the traditional algorithms.

The genetic algorithm (GA) is an optimization and
search technique based on the principles of genetics and
natural selection. A GA allows a population composed of
many individuals to evolve under specified selection rules
to a state that minimizes the ‘‘cost function”. GA has
remarkable abilities which include being able to solve
non-smooth, non-continuous, non-differentiable cost func-
tions, to escape the local optima and to move towards the
global optimum.

Due to these inherent advantages, the genetic algorithm
(GA) is employed in this study as the solution space is vast
and several local optima should be possible. As the heat
sources are of constant length, the coordinates of their
mid-points are taken as the input variables to GA. Hence
there are six input variables x1, y1, x2, y2, x3, y3 correspond-
ing to the mid-points of the three heat sources, respectively.
The cost function (C) used in the GA is defined as follows:

C ¼ � q00

kðT max � T1Þ

� �
ð11Þ

The objective of the optimization is to minimize the cost
function (C) which would lead to the minimization of Tmax.
To calculate the population fitness values, a numerical sim-
ulation must be performed, until convergence, with the cor-
responding set of heat sources locations for each
individual. Since several individuals and populations must
be evaluated, the computational cost may become prohib-
itive. Due to this, the micro genetic algorithm (MGA)
(Krishnakumar [17]) is used, since it requires a reduced
population size, and therefore fewer fitness function
evaluations.

4.2. Micro genetic algorithm

Micro genetic algorithms (Krishnakumar [17]) evolve
very small populations that are very efficient in locating
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promising areas of the search space. As the small popula-
tions are unable to maintain diversity for many genera-
tions, the population is restarted whenever diversity is
lost, keeping only the very best fit individuals. Restarting
the population several times during the run of the genetic
algorithm has the added benefit of preventing premature
convergence due to the presence of a particularly fit indi-
vidual, which poses the risk of preventing further explora-
tion of the search space and so may make the program
converge to a local minimum.

Fig. 5 shows the flow chart for implementing the micro
genetic algorithm. Micro GA randomly initializes Npop,
string individuals. For every generation (iteration), MGA
performs six basic operations: variable encoding and
decoding, cost function evaluation, tournament selection,
uniform crossover, elitism and convergence checking with
re-initialization. A through review of implementing Micro
GA is given in Senecal [18] and Kazarlis et al. [19]. How-
ever the basic functional components are explained for
the sake of completeness.

4.2.1. Variable encoding and decoding

For convenient implementation of the basic genetic
operators of the GA, the parameters are coded into a bin-
ary string. (Goldberg [14]). The binary string is commonly
referred to as a chromosome, while its features are known
as genes. The precision of each of the design parameters
included in a chromosome is based on the desired range
Fig. 5. Flow chart of functional components
of the parameter (i.e., its minimum and maximum values)
and how many bits are used in its representation. Thus,
the precision p of an input parameter Xi is given by
(Homaifar et al. [20])

p ¼ X max � X min

2k � 1
ð12Þ

where k is the number of bits used to encode the parameter.
For example, the y coordinate of the mid point of the

heat source has the extreme values as ymin = 0.02 m and
ymax = 0.38 m. As 16 bits are used to encode this variable
to the binary form, the precision of y is 5.49 � 10�6 m. This
high precision is required for adequate sampling of the
search space, thus avoiding under sampling.

4.2.2. Cost function evaluation

As discussed earlier, the cost function (C) for a particu-
lar set of input variables is determined from a numerical
simulation using the CFD solver. With an appropriate
grid, simulations were performed in the CFD solver to
evaluate the maximum temperature (Tmax) on any of the
three discrete heat sources. Tmax is then used to evaluate
the cost function (C) from Eq. (11).

4.2.3. Tournament selection
Survival of the fittest translates into discarding the chro-

mosomes with the highest cost and selecting the chromo-
somes with the lowest cost. Tournament selection is one
of Micro GA used in the present study.
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of the popular methods for selection in micro genetic algo-
rithm as it ensures better diversity in the small micro pop-
ulations of five individuals. Initially (Npop/2) groups of
individuals are randomly selected from the total Npop pop-
ulation without replacement. These groups participate in a
tournament where the winning individuals of each tourna-
ment, with lower cost value, will form the Npop/2 mating
pool. This process is repeated twice to create the Npop mat-
ing pool.

4.2.4. Uniform crossover

Uniform crossover is one of the methods of reproduc-
tion wherein bits are exchanged between two string individ-
uals. In particular, two individuals are randomly selected
as parent individuals from the mating pool based on tour-
nament selection. Then arbitrary positions on both individ-
uals are chosen for crossing locations where exchange of
bits takes place. A crossing mask is employed to determine
the crossing locations. Two parent individuals will
exchange their bits where the corresponding value in mask
is one. The mask consists of 0 s and 1 s distributed ran-
domly across its length. In this study, the crossover proba-
bility, which is percent of bits exchanged, is set at 100%.

4.2.5. Elitism

In addition to performing the cost function evaluation,
tournament selection, uniform crossover, MGA uses the
elitism. Elitism guarantees that the best string individual
survives until the last generation. More specifically, if the
best offspring individual is worse than the best parent indi-
vidual, the best parent individual will randomly replace any
offspring individual. That is, the offspring individuals in the
current generation become parent individuals in the next
generation.

4.2.6. Convergence

Convergence of a genetic algorithm is evaluated based
on two factors.

1. Population convergence: Population convergence is
defined as the progression towards chromosome unifor-
mity. Thus, for the genetic algorithm operators
described above, a gene may be considered to be con-
verged, when 95% of that particular gene in the entire
population shares the same value [19]. A population is
then converged when all of the genes are converged.
When a population has converged, the best individual
is stored and the rest are re-initialized to bail the solu-
tions out from the local minima towards the global opti-
mum, as there is no mutation in the micro genetic
algorithm.

2. Algorithm convergence: There are several different meth-
ods to specify the convergence criteria for the genetic
algorithm like specifying a threshold for the minimum
cost function, specifying a threshold for the difference
between the lowest and the mean cost in the population,
specifying a maximum number of generations to be
evolved. In the current study, maximum number of gen-
erations has been set to 1000 and the difference between
the best and average fit individuals is set as 5% of the
best cost function value.
4.3. Validation of the computational code for MGA

Based on all the above factors and according to the flow
chart given in Fig. 5, a computational code for optimizing
using the Micro GA has been developed using the commer-
cial Matlab 7.0 software. To ensure the validity of the code
developed, it was tested with Rastrigin’s function, Ras(x).
This function is widely used as a benchmark for testing
optimization algorithms as it has many local minima that
make it difficult for standard, gradient-based methods to
find the global minimum

RasðxÞ ¼ 20þ x2
1 þ x2

2 � 10ðcos2px1 þ cos2px2Þ ð13Þ

Despite its complexity, the function has just one global
minimum, which occurs at the point [0, 0] in the x1–x2

plane, where the value of the function is 0. At any local
minimum other than [0, 0], the value of Rastrigin’s func-
tion is greater than 0. The farther the local minimum is
from the origin, the larger the value of the function is at
that point.

Fig. 6 shows the optimization of Rastrigin function with
the developed micro genetic algorithm code. It can be
observed that the optimum is reached very fast within 80
generations and the optimum value is found to be exactly
equal to the global optimum value of zero. This clearly val-
idates the MGA code for solving complex optimization
problems. Hence the code has been used in the present
study to find the optimum location of the heat sources.
4.4. Solution procedure

The solution procedure for optimizing the heat source
location is illustrated in the flow chart shown in Fig. 7.
F
M



Fig. 8. Variation of cost function with generation.

Fig. 7. Flow chart illustrating the optimization of location of heat
sources.

2306 R.R. Madadi, C. Balaji / International Journal of Heat and Mass Transfer 51 (2008) 2299–2312
The various steps involved are as follows:

(1) Initially a population of five individuals is randomly
generated and it is then checked for population
convergence.

(2) If the population of individuals has not converged,
then all the five cases are modeled using the meshing
software to create a sufficiently refined mesh to ensure
a low discretization error.

(3) These five cases with different configurations of heat
sources are then simulated in the solver and the max-
imum temperature (Tmax) on any of them is evaluated.

(4) Tmax is used to calculate the cost function values
using Eq. (11).

(5) These cost function values are passed to the micro
genetic algorithm which applies the genetic operators
and creates the next generation.

These sequences of steps are repeated until the micro
genetic algorithm converges to the global optimum. In this
manner, the optimization has been done for 66 generations
and the results are shown in Fig. 8. It can be observed that
for the first 20 generations, lowest cost (C) = � 740 which
corresponds to a temperature of 355.97 K. Micro GA finds
another local optimum after 20 generations with a cost func-
tion value C = �979.6, temperature of 342.18 K. The aver-
age cost value is fluctuating because MGA is constantly
searching in different regions in the search space to find bet-
ter solutions.

4.5. Limitations

Time was the major constraint for the simulation. The
grid for the model had 25,000 nodes and the simulations
were done using Fluent 6.3 software on an IBM p690 series
machine, a 32 Processor machine with a RAM size of
64 GB. Under such conditions, simulation for each individ-
ual in a generation took around 6 hours which shows that
the simulation is a computationally intensive process when
the solutions have to be obtained repeatedly. In order to
reduce the time taken, Fluent parallel solver was employed
wherein the grid was split into four partitions and distrib-
uted to 2 computer nodes for parallel processing. The time
taken for each simulation was reduced by half to 3 h, which
was still considerably high. Hence, in order to overcome
this severe constraint on time and to obtain the global opti-
mum, a forward model should be developed to predict the
cost function values based on the six coordinates of the
heat source locations.

5. Artificial neural networks

Artificial neural networks (ANNs) are computational
modeling tools that have recently emerged and found exten-
sive acceptance in many disciplines for modeling complex
real-world problems. ANNs may be defined as structures
comprised of densely inter-connected adaptive simple pro-
cessing elements (called artificial neurons or nodes) that
are capable of performing massively parallel computations
for data processing and knowledge representation. The
attractiveness of ANNs comes from the remarkable infor-
mation processing characteristics such as non-linearity,
high parallelism, robustness, fault and failure tolerance,
learning, ability to handle imprecise and fuzzy information
and their capability to generalize. ANN-based models are
empirical in nature; however they can provide practically
accurate solutions for precisely or imprecisely formulated
problems and for phenomena that are only understood
through experimental data and field observations.

5.1. Artificial neuron model

Artificial neural networks are inspired by models of liv-
ing neurons. Artificial neurons are nodes in a neural net-
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work, and these nodes are the processing units that per-
form nonlinear summing functions. Fig. 9 shows a typical
artificial neuron which receives input signals si from possi-
bly n different sources. These signals traverse weighted
pathways wij, in order to generate the internal activation
xj, which is a linear weighted aggregation of the impinging
signals, modified by an internal threshold hj. The activation
xj is given by Eq. (14)

xj ¼
Xn

i¼1

wijsi þ hj ð14Þ

The activation of a neuron is subsequently transformed
through a signal function d, to generate the output signal
sj = d(xj). The sigmoid signal function involves an expo-
nential function to generate the output from the neuron
activation. The equation for this function is given as
follows:

dðxjÞ ¼
1

1þ e�xj
ð15Þ

This function, shown in Fig. 10, has properties like
monotony and continuity which enable the networks to
approximate and generalize on functions by learning from
data. Hence, this signal function is most widely used in the
hidden layers of the neural network.

5.2. Back-propagation ANN

Artificial neurons are grouped together to form a layer
of neurons. An artificial neural network (ANN) consists
of several layers of neurons to train the network for func-
tion approximation or generalization. The feed forward
Fig. 10. Sigmoid signal function of an artificial neuron.

Fig. 9. Illustration of an artificial neuron.
Back-Propagation algorithm is the most widely used
method to train the ANNs. Back-propagation (BP) is
based on searching an error surface (error as a function
of ANN weights) using the gradient descent algorithm
for points with minimum error. Each iteration in BP con-
stitutes two steps.

5.2.1. Forward sweep

In an initialized ANN (i.e., an ANN with assumed ini-
tial weights), the forward sweep involves presenting the
network with one training example. This starts at the input
layer where each input node transmits the value received
forward to each hidden node in the hidden layer. The col-
lective effort on each of the hidden nodes is summed up
using Eq. (14) to evaluate the activation at each node. Once
the activation at the hidden node is determined, the output
signal at that node is evaluated using the neuron signal
function. The same procedure of calculating the net effect
is repeated for each hidden node and for all hidden layers.
The net effects calculated at the output nodes are conse-
quently transformed into output signal using a neuron sig-
nal function. This output signal is the ANN solution of the
fed example, which may deviate considerably from the tar-
get solution due to the arbitrary selected interconnection
weights.

5.2.2. Backward sweep

In the backward sweep, the difference (i.e., error)
between the ANN and the target outputs is used to adjust
the interconnection weights, starting from the output layer,
through all the hidden layers, to the input layers. The
weights are adjusted using the gradient descent algorithms
like the Quasi Newton, Resilient back-propagation, Leven-
berg–Marquardt and so on.

5.3. Generalization of ANN

Generalization is the property of artificial neural net-
works to give reasonable answers on unseen input param-
eter combinations. If a network is trained with only few
training samples, then it may quickly ‘over fit’ the training
data which means that the network error is driven to a
small value for the training samples but will become large
when a new input is presented. This indicates that the net-
work has memorized the training samples which seriously
affect the generalization property of the ANN. There are
two popular methods to avoid over fitting and improving
the generalization performance.

5.3.1. Early stopping

In this technique, the available data is divided into three
subsets. The first subset is the training set, which is used for
computing the gradient and updating the network weights
and biases. The second subset is the validation set. The
error on the validation set is monitored during the training
process. The validation error normally decreases during the
initial phase of training, as does the training set error.
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However, when the network begins to overfit the data, the
error on the validation set typically begins to rise. When
the validation error increases for a specified number of iter-
ations the training is stopped, and the weights and biases at
the minimum of the validation are returned. The biggest
disadvantage of early stopping is that it requires the data
set to be divided into training, validation and test thereby
not using all the available data.
5.3.2. Bayesian regularization

Bayesian regularization works by modifying the perfor-
mance function by adding a term that consists of the mean
of the sum of squares of the network weights. This modifies
the performance function such that it incorporates a bias
against large network weights. The performance function
F(w) is given by Eq. (16)

F ðwÞ ¼ aEDðwÞ þ bEwðwÞ ð16Þ

The sum squared error ED(w) and weight decay regular-
izer Ew(w) are defined by Eqs. (17) and (18)

EDðwÞ ¼
1

2

Xn

i

ðai � tiÞ2 ð17Þ

EwðwÞ ¼
1

2

Xn

i;j

w2
ij ð18Þ

where n is the total number of training patterns, ai is the
output of the ANN and ti is the target available data.

David MacKay [21] had first proposed a probabilistic
approach to the ANN learning process. In the Bayesian
framework, the network weights are assumed to be random
variables. The objective of the Bayesian training process is
to find the most probable weights (w) and the regulariza-
tion parameters a and b such that the performance function
F(w) given by Eq. (16) is minimized.

According to Bayes rule the probability distribution can
be written as

P ðwjD; a; b;ModÞ ¼ P ðDjw; a;ModÞP ðwjb;ModÞ
P ðDja; b;ModÞ ð19Þ

where D corresponds to the input–output data samples,
Mod denotes the network model and architecture.
P(wjb, Mod) is the prior distribution, which corresponds
to our knowledge of the weights before any data is col-
lected. P(Djw,a, Mod) is the likelihood of the data occur-
ring, given the weights w. The error function is now
interpreted as defining the probability distribution of a
noise model

P ðDjw; a;ModÞ ¼ 1

ZDðaÞ
e�aED ð20Þ

where ZD(a) = (P/a)N/2 and N is the number of network
outputs. So the use of the sum squared error ED corre-
sponds to an assumption of Gaussian noise on the target
variables. Similarly, the regularizer EW(w) is interpreted
in terms of a prior distribution over the parameters
Pðwjb;ModÞ ¼ 1

ZDðbÞ
e�bEw ð21Þ

Substituting the expressions for the likelihood function
and prior probability into Eq. (19) gives the posterior dis-
tribution of the weights shown in Eq. (22)

PðwjD; a; b;ModÞ ¼ 1

ZFðwÞ
e�F ðwÞ ð22Þ

Applying Bayes theorem, the probability distribution of
a, b is given by Eq. (23)

Pða; bjD;ModÞ ¼ PðDja; b;ModÞP ða; bjModÞ
P ðDjModÞ ð23Þ

The optimum regularization parameters are calculated
by maximizing the posterior probability P(a,bjD, Mod).

Bayesian regularization has the specific advantage that it
does not require any ‘test set’, ‘validation set’, hence all the
available data can be used for training. The salient advan-
tage of this algorithm is that it implicitly provides a measure
of how many network parameters (weights) are effectively
used by the network. This indicates whether a sufficient
number of training samples are presented to the network
and automatically determines the optimum network size.

5.4. Network architecture

There are four elements that comprise the artificial neu-
ral network’s architecture:

1. The training algorithm.
2. The activation functions at each layer.
3. The number of layers.
4. The number of neurons in each layer.

Based on the discussion in Section 5.3, Bayesian regular-
ization is employed as the training algorithm to train the
network. Due to the inherent advantages of continuity
and monotonic nature, tangential sigmoid function is used
as the activation function for all the hidden layer neurons
and linear function is used in the output layer. Since there
are six inputs to the neural network, it has six neurons in
the input layer and one neuron in the output layer. There
are no established methods to objectively find the number
of hidden layers and the neurons in the hidden layers;
hence they have been found out by trial and error.

The 66 generations of Micro GA optimization provide
238 distinct input data sets. Eighty percent of the data is
randomly selected and used for training the network and
remaining 20% is used to test the network performance.
The following are the performance parameters defined in
Ermis et al. [22] calculated on the test data and used to
compare the different network architectures.

1. Mean relative error (MRE)
MRE ¼ 1

n

Xn

i¼1

jai � tij
jtij

ð24Þ
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2. Absolute fraction of variance (R2)

R2 ¼ 1�
Pn

i¼1ðai � tiÞ2Pn
i¼1ðtiÞ2

" #
ð25Þ

3. Correlation coefficient (Rtest) between the ANN pre-
dicted values and the actual values in the test data set.

The performance parameters on various networks have
been summarized in Table 3. It can be observed that for
a network with single hidden layer, minimum error occurs
when there are 7 hidden neurons and the error on the test
data increases with the addition of more neurons. The data
clearly shows that for a network 11, MRE has a least value
of 14.3% and Rtest is 0.93. Hence, based on the above dis-
cussion, a neural network with seven neurons in the first
hidden layer and 2 neurons in second hidden layer is used
in the present study. Fig. 11 shows the neural network
architecture with the six input variables and the Cost func-
tion (C) as the output.
Table 3
Performance parameters on different networks

S. No. Number of neurons
in layer 1

Number of neurons
in layer 2

MRE R2 Rtest

1 6 0 17.192 0.971 0.904
2 7 0 14.698 0.976 0.934
3 8 0 16.054 0.975 0.912
4 10 0 19.024 0.956 0.866
5 12 0 16.065 0.968 0.949
6 15 0 16.859 0.976 0.910
7 20 0 16.935 0.967 0.882
8 30 0 16.558 0.964 0.854
9 6 2 14.316 0.960 0.892
10 6 6 15.970 0.971 0.900
11 7 2 14.298 0.978 0.928
12 7 5 17.432 0.958 0.873

Fig. 11. Neural network architecture employed in the present study to
predict the cost function values from six inputs.
6. Results and discussion

6.1. Integration of the ANN with Micro GA

As discussed in the earlier chapters, in order to over-
come the severe time constraint, a forward model had to
be developed. For this purpose, the artificial neural net-
work (ANN) shown in Fig. 11 is trained to predict the cost
function values from the six inputs corresponding to the
heat source locations within a reasonable range of accu-
racy. This ANN is the forward model and supplants the
numerical simulations, thereby reducing the time required
for evaluating one case from 3 h to 1 s. This phenomenal
reduction in time taken facilitates the Micro Genetic Algo-
rithm to optimize faster.

After integration of the ANN with Micro GA, the algo-
rithm was allowed to run until convergence to evaluate the
global optimum and the results are shown in Fig. 12. It
shows that after successive intervals, the lowest cost contin-
ues to decrease. The Micro GA algorithm employed
evolved the population of individuals for 1000 generations
as shown in Fig. 12. After 750 generations, the MGA has
located the optimum with a cost function of �1508.36
which corresponds to a temperature of 327.39 K. As a test
of this optimum, this best individual was again numerically
simulated using the solver and Tmax was determined to be
329.65 K which corresponds to an error of only 0.7% com-
pared to the ANN’s predicted temperature. In addition,
even when the population was made to evolve for 5000 gen-
erations, the above optimal solution did not change further
which shows that it is indeed the ‘‘true global optimum”.

The location of the heat sources for the best individuals
are given in Table 4. All the temperatures are very close to
each other varying from 329 K to 335 K which shows that
micro GA gives many optimal/near optimal solutions, and
is ‘‘egalitarian” so to speak, while the traditional gradient
descent algorithms provide only one optimum.
Fig. 12. Optimization of heat sources using micro GA.



Table 4
Optimal locations of the best individuals

Tmax (K) x1 (cm) y1 (cm) x2 (cm) y2 (cm) x3 (cm) y3 (cm)

329.65 35.88 19.74 37.94 31.65 38.20 24.24
330.22 36.91 31.65 34.60 20.00 36.14 19.47
332.17 36.91 31.65 34.60 20.00 38.20 22.38
335.17 33.82 31.65 35.88 20.00 38.20 22.38
335.63 33.82 31.65 35.88 20.00 38.20 22.38

Fig. 14. X-velocity (u) Profile of the optimal distribution of heat sources
inside the cavity (m/s).
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6.2. Profile contours of the optimal distribution of the heat

sources

6.2.1. Velocity

The fluid flows almost horizontally at the inlet due to the
high velocity of 4 m/s. As it approaches the opposite wall,
it is tilted upwards and moves vertically towards the outlet.
On reaching the outlet, some amount of fluid turns in the
opposite direction and moves horizontally near the top
wall and vertically near the left wall, thereby creating a vor-
tex as seen in Fig. 13. It can also be observed that the fluid
at the bottom right and top left corner is almost static. So
to avoid this, a small tilt at the bottom right (instead of a
sharp corner) may be employed to guide the fluid in the
right direction. Figs. 14 and 15, respectively show horizon-
tal velocity and vertical velocity profiles which clearly indi-
cate the vortex formations.
Fig. 15. Y-velocity (v) profile of the optimal distribution of heat sources
inside the cavity (m/s).
6.2.2. Temperature

The temperature contours for the optimal configuration
are shown in Fig. 16. It shows that the temperature in most
of the cavity region is not affected by the heat sources. The
most interesting feature of this optimal solution is that, all
the heat sources are located along the flow streamlines i.e.,
no heat source blocks the flow; therefore there is no wake
region created. During the MGA iterative process, it has
been observed that if a heat source falls in the wake region
of another heat source, then its temperature would be as
Fig. 13. Velocity magnitude profile of the optimal distribution of heat
sources in the cavity (m/s).

Fig. 16. Temperature profile of the optimal distribution of heat sources
inside the cavity (K).



Fig. 17. Sensitivity analysis of the optimal distribution of heat sources.
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high as 500 K. Such high temperatures are explained based
on knowledge that in the wake region velocities are lower
and the fluid temperature is higher leading to a lower heat
transfer coefficient.

6.3. Sensitivity studies

Sensitivity studies have been done on the optimal distri-
bution of heat sources by varying the Reynolds number
(Re) from 5000 to 35,000. This is done to evaluate the
change in parameters like maximum temperature (Tmax)
and the maximum pressure drop (Dpmax) with an increase
in velocity. The normalized values of temperature and pres-
sure drop, defined by Eqs. (26) and (27), are plotted against
Reynolds number in Fig. 17.

Normalized temperature T �max ¼
T max

T max
max

� �
ð26Þ

Normalized pressure drop Dp�max ¼
Dpmax

Dpmax
max

� �
ð27Þ

where T max
max and Dpmax

max are the maximum temperature and
pressure drop among the data obtained by varying the
Reynolds number.

Fig. 17 shows that as the Reynolds number is increased,
there is a variation of 10% in the normalized temperature
for the Reynolds number ranging from 5000 to 15,000,
while there is no appreciable change in temperature at Rey-
nolds number higher than 15,000. On the other hand, the
maximum pressure drop increases very rapidly. Therefore,
the pressure drop is a more severe constraint in the design
of thermal systems than the heat transfer as the power of
the intake fan has to be varied accordingly to overcome
the pressure drop.
7. Conclusions

In this study, Bayesian regularization neural network,
trained with sufficient number of data samples evaluated
from a finite volume solver, is used as a forward model
for cost function evaluation in the Micro genetic algorithm
optimization of the location of multiple discrete heat
sources in a ventilated cavity. The salient advantage of this
method is that, it requires less function evaluations from
the finite volume solver than a conventional optimization
algorithm needs, hence the computational time can be
reduced substantially which will help in obtaining optimal
solutions faster.

The optimal distribution of three discrete heat sources is
when all of them are along the flow streamlines i.e., no heat
source is blocking the flow to create a wake region behind
it. From the sensitivity analysis, it has been observed that
as the Reynolds number is increased for the optimal distri-
bution, the maximum temperature Tmax falls slowly while
the maximum pressure drop increases rapidly indicating
that pressure drop is a stronger constraint in the design
of thermal systems rather than heat transfer.

The present study has only dealt with reducing the tem-
perature in the optimization process. However, in practical
situations both pressure drop and temperature should be
considered in the design process. This can be done by using
multi-objective genetic algorithms.
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